
Understanding and Supporting Debugging Workflows in CAD
Felix Hähnlein

fhahnlei@cs.washington.edu
University of Washington

USA

Gilbert Bernstein
gilbo@cs.washington.edu
University of Washington

USA

Adriana Schulz
adriana@cs.washington.edu
University of Washington

USA

A B C D

E

F

Figure 1: Parametric edits in CAD can lead to errors. The user is editing the current model (A) by modifying the sketch Aileron
Profile (B). They intend to move the orange curve to the right side of the green square (C) to obtain the model show in (D).
However, they are confronted with error messages and a broken model (E). Whereas the first error message appears in Spar
Fastener Hole, the actual error happens in Aileron Airfoil Guide. (F) Our debugger, DeCAD, makes readily available the
information needed to locate and understand the problem. The top and bottom rows of the visualizer show the CAD model
before and after the edit, respectively. Aileron Airfoil Guide is extruding the wrong face after the edit.

ABSTRACT
One of the core promises of parametric Computer-Aided Design
(CAD) is that users can easily edit their model at any point in time.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676353

However, due to the ambiguity of changing references to inter-
mediate, updated geometry, parametric edits can lead to reference
errors which are difficult to fix in practice. We claim that debugging
reference errors remains challenging because CAD systems do not
provide users with tools to understand where the error happened
and how to fix it. To address these challenges, we prototype a graph-
ical debugging tool, DeCAD, which helps comparing CAD model
states both across operations and across edits. In a qualitative lab
study, we use DeCAD as a probe to understand specific challenges
that users face and what workflows they employ to overcome them.

https://orcid.org/0000-0002-3484-4004
https://orcid.org/ 0000-0002-3016-1169
https://orcid.org/0000-0002-2464-0876
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3654777.3676353

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

We conclude with design implications for future debugging tool
developers.

ACM Reference Format:
Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz. 2024. Understanding
and Supporting Debugging Workflows in CAD. In The 37th Annual ACM
Symposium on User Interface Software and Technology (UIST ’24), October
13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3654777.3676353

1 INTRODUCTION
Parametric Computer-Aided Design (CAD) software is the most
widely used tool for manufacturing-oriented design. Such systems
(e.g. Onshape, Solidworks, Fusion, AutoCAD) essentially represent
3D geometry as a sequence of operations that build the geometry
bottom up. As shown in Figure 2, these operations take as input
numerical parameters (e.g. the length of a fillet) and references to
existing geometry (e.g., the edge that should be chamfered). While
not commonly recognized as such, under this representation, a
CAD model is a program.

One of the most important benefits of this modeling paradigm
is that it supports further modeling iterations through parameter
editing. In practice, however, editing parameters of one operation
often causes subsequent operations to fail.

Most commonly, these errors are the result of a failure to resolve
references. During modeling, users create references to interme-
diate geometric entities (faces, edges, and vertices) by clicking on
them in the CAD GUI. CAD systems have mechanisms for recog-
nizing these references and finding appropriate matches when the
topology changes, see Fig 2. While the heuristics used to drive these
algorithms are often successful, they can sometimes lead to unin-
tended reference changes. In long, real-world modeling sequences,
the effects of reference errors can propagate and cause downstream
operations to fail, see Fig. 1.

It is well understood that while better reference matching algo-
rithms can minimize the number of errors in practice, ultimately
such errors cannot be completely avoided because the reference
matching problem is inherently ambiguous—the act of clicking
over a geometric entity does not fully determine how the reference
should behave when the topology changes [12] . In this work, we
therefore propose to support users in correcting these errors when
they appear. Our key insight is that, since CAD models are pro-
grams, when the user is confronted with reference errors, they are
actually confronted with a broken program, which they have to
debug. Therefore, the main research question of this work is: What
should a debugger for CAD look like?

Importantly, while CAD systems will highlight the operations
that failed, reference errors are silent and may have occurred in
any operation preceding the failed one. For example, in Fig. 1, the
reference error happens in Aileron Airfoil Guide whereas the
first failed CAD operation was Spar Fastener Hole. Therefore,
the debugger should help the user answering two questions:

• Where did a reference error occur?
• How do we fix it?

Our goal is to work towards a debugger for CAD by investigat-
ing what specific challenges users face and what workflows they
gravitate towards to overcome them.

Width: 1 cm Width: 0.8 cm Width: 0.5 cmOperations

Figure 2: CAD operations (left) take as input references to
intermediate geometry. Fillet1 (bottom left) rounds two
top edges of the cuboid (highlighted in orange). Editing the
width of the cuboid to 0.8 cm seamlessly updates downstream
operations. However, reducing the width to 0.5cm changes
the input topology to Fillet1 and the CAD system has to
guess which edges to select. Here, it chooses all four edges.

Specifically, based on informal discussions with experts, real-
world user interaction data and our own experience, we provide
an analysis of current UI features, debugging challenges and work-
flows. Our analysis concludes that users have to simultaneously
discover where topological changes happen and where an unin-
tended reference change happens. This is challenging with CAD
systems which are primarily designed for modeling, but not for
debugging.

Informed by our analysis, we design a prototype debugger, called
DeCAD. Implemented as a plugin to an industry standard CAD
system, Onshape [2], we develop three key features: (1) a volume
difference chart for a high-level summary of per-operation geomet-
ric change; (2) a two dimensional panel view of the CAD model
to compare a model to its original design intent; (3) per-operation
boolean difference, overlay visualizations and reference arrows to
support per-operation change discovery.

To examine if users face our hypothesized challenges or if they
face additional challenges and to understand their debugging work-
flows, we conduct a qualitative lab study with CAD experts. In the
study, users are asked to resolve erroneous edits from real-world
CAD models.

In our lab study, we use DeCAD as a probe to understand if we
can tackle hypothesized debugging challenges and what new work-
flows we can enable. Based on our findings, participants managed
to integrate DeCAD into their debugging workflow. The proposed
features address our initial set of challenges but they also introduce
new challenges. We synthesize our findings into a set of design
guidelines for future tool-builders.

In summary, our contributions are:
• An analysis of challenges that users face when dealing with
reference errors (Sec. 3).

• A publicly available prototype debugger, DeCAD (Sec. 4).

https://doi.org/10.1145/3654777.3676353
https://doi.org/10.1145/3654777.3676353

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

• Findings from our lab study with CAD experts and design
implications for future tool builders (Sec. 5).

2 RELATEDWORK
Our research lies at the intersection of 3D shape editing, references
management in CAD systems, methods for visualizing programs
and tools for debugging support.

2.1 Shape editing
Significant prior work focused on editing geometry directly without
the constraints of parametric programs by optimizing an energy
functional [29], modifying proxy models [34] or by analyzing per-
ceptual shape properties [17]. Within parametric shape editing,
prior work studied the challenges of manipulating procedural mod-
els [49]. Approaches to tackle these challenges include intermediate
editing structures [10, 16] and leveraging prompt-driven models to
modify parameters [18]. Bidirectional editing methods prioritize di-
rect interaction with geometry and they have been studied for SVG
[25], CSG [21] and parametric CAD [13, 44]. Instead of proposing
a different method to perform an edit, our work seeks to augment
the standard editing interface with tools to inspect the modeling
sequence and to understand the effects of the edit.

2.2 References in CAD
Modern, GUI-based CAD systems predict how references should
match to new entities after a topological change provoked by an
edit. This process is called entity matching. Prior work has focused
on improving entity matching methods, for example by using pro-
gram synthesis to automatically generate reference queries [40].
Some textual CAD programming languages, such as CADQuery [1]
expose reference queries as a programming primitive. While such
advances can minimize the number of references errors in practice,
these cannot be avoided because the problem is underconstrained.

To address this fundamental limitation, Cascaval et al. have pro-
posed a domain-specific language (DSL) for CAD that allows users
to unambiguously specify how references propagate with topologi-
cal changes [12]. Although this approach offers formal guarantees
that such reference errors will be avoided, it requires significantly
more programming effort from the user upfront. Instead of merely
clicking on a geometric entity in a user interface, users must explic-
itly program the reference construction.

Ourwork takes the position that entitymatching is a good default
mode since it requires minimal effort from the user most of the
time and professional users are used to it. We acknowledge that
the propagation of an edit is inherently ambiguous and additional
information from the user is necessary. Our work aims at providing
a graphical interaction mode for allowing users to easily understand
what information is missing so that they can resolve the error.

2.3 Visualizing programs and program histories
Program visualizations have been widely studied to support stu-
dents and developers to reason about their code [26, 50]. One ap-
proach consists in creating situated variable visualizations next to
the original code [23, 36]. Omnicode lets the developer visualize
the entire history of variable values via a matrix of scatterplots [31].
LaToza and Myers focus on visualizing the call graph to support

understanding the control flow of a program [35]. Theseus also
focuses on the function call behavior of programs and visualizes
the call count of functions over the code [37]. BiFröst and WiFröst
focus on supporting makers of IoT devices to visualize the runtime
behavior of embedded code and circuits [42, 43].

Our work is aligned with the aforementioned prior work to
reduce excessive cognitive load [45] by visualizing program states
and the control flow, applied to 3D CAD.

We also relate to work which focuses on visualizing program
histories, which has been studied in the context of manipulating
editing histories in interactive data visualizations [24]. NodeGit
computes the difference between two graphically created, para-
metric programs [47], which is a challenging problem. Instead of
visualizing the entire history of edits or computing program differ-
ences automatically, we focus on providing designers with tools to
locally discover changes incurred by their edit.

2.4 Debugging tools
Debugging is a challenging and time-consuming activity in software
development which has motivated prior work to analyze debug-
ging behavior, time spent on debugging activities and debugging
challenges [8, 9, 20, 33, 53]. McCauley et al. provide a survey of the
different causes of bugs and what kind of knowledge developers
seek out during debugging [41].

To address debugging challenges, prior research has proposed
methods for log-based debugging [30], breakpoint-based debugging
[51], omniscient debugging [46] and interrogative debugging [32].

Debugging has also been adopted by specific domains, such as
electronic circuit design [38], database queries [19], data wrangling
[48], reactive programming [27] and multiverse analysis [22].

Our research aligns with prior work on domain-specific debug-
ging tools, which we apply to 3D CAD. Similar to the goals of other
tools, we want to reduce commonly observed context switches to
reduce user’s cognitive load [7, 32].

3 ANALYSIS OF ERRORS AND CHALLENGES
The goal of this section is to analyze how users currently deal with
reference errors in CAD to inform both the design of our prototype
debugger and our lab study.

First, what exactly do we mean by reference errors? We are
assuming the following scenario. The user performs an edit on
an operation 𝑜𝑒𝑑𝑖𝑡 . Due to this edit, some subsequent operation
𝑜𝑡𝑜𝑝𝑜 will be the first operation to now produce a different topology
w.r.t. before the edit. Starting from 𝑜𝑡𝑜𝑝𝑜 , all subsequent operations
are now topologically different. However, a difference in topology
is not necessarily unexpected or undesirable. Then, due to the
topology change, some operation 𝑜𝑟𝑒 𝑓 will reassign its references
in an unintended way. We say that 𝑜𝑟𝑒 𝑓 has a reference error. Due
to the reference error, 𝑜𝑟𝑒 𝑓 now generates unintended geometry,
but it does not fail, i.e., the geometry kernel reruns successfully. We
say that 𝑜𝑟𝑒 𝑓 exhibits a geometric error. The geometric error will
change the input for downstream operations, of which 𝑜 𝑓 𝑎𝑖𝑙 is the
first downstream operation failing to regenerate and throwing an
error.

The abstracted operation sequence is the following:
[..., 𝑜𝑒𝑑𝑖𝑡 , ..., 𝑜𝑡𝑜𝑝𝑜 , ..., 𝑜𝑟𝑒 𝑓 , ..., 𝑜 𝑓 𝑎𝑖𝑙 , ...].

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

Importantly, a change in topology is not necessarily wrong.
Caused by the reference error, it is the geometric error which derails
downstream operations. The challenge is to locate 𝑜𝑟𝑒 𝑓 among all
the changes occurring between 𝑜𝑒𝑑𝑖𝑡 and 𝑜 𝑓 𝑎𝑖𝑙 .

Next, we qualitatively analyze the features provided by GUI-
based CAD systems to find 𝑜𝑟𝑒 𝑓 , Sec. 3.1. Then, we quantitatively
analyze a dataset of reference errors and debugging traces, Sec.
3.2. Lastly, we hypothesize debugging challenges that users face in
current CAD systems, 3.3.

3.1 GUI features in CAD systems
When a user encounters a reference error, the user interface will
look similar to Fig. 1 (bottom left). Inspecting a failed operation𝑜 𝑓 𝑎𝑖𝑙
(marked in red) will show an error message, ranging from more
specific messages, e.g. two entities are not intersecting anymore, to
more generic messages which simply indicate that the operation
could not regenerate. These error messages will be specific to the
failed operation, which is the visible symptom, but not the root
cause of the problem, they are not indicating the reference error.

The geometric change in Fig. 1 (bottom left) is easily visible, the
initial part has been split in two and they are assigned different col-
ors. However, especially in a multi-part CAD model and depending
on the current 3D view, geometric changes can be challenging to
discover.

For debugging, users need to gather information about both the
program behavior and about the geometric behavior of their model.
For this discussion and throughout the rest of the paper, we will
talk about the differentmodel states of a CAD model. A CAD model
changes its model state if the program has been edited or if the
last executing operation has been changed. The main 3D modeling
view of a CAD system shows one model state at a time.

Features to navigate the program. CAD systems have developed
several UI features to explore the operation sequence, i.e., the pro-
gram.

There are three main interactions which, starting from an oper-
ation, give the user information about the operation’s geometric
behavior, see Fig. 3. For example, users can inspect an operation
by entering an edit mode, see Fig. 3 (middle), which changes the
visualized model state to the selected operation.

Users can also inspect operation dependencies, which opens a
sublist view of all operations which created or modified the opera-
tion’s input entities. Note that in Solidworks[5], the CAD system
closest to Onshape, users create a tree of operations, which reifies
operation dependencies and exposes them by default.

Lastly, some CAD systems have version control systems (VCS),
similar to VCS used in software engineering [14]. It allows users
to overlay geometry from different, timestamped versions of the
CAD model, which are always executed until the last operation.

Features to navigate the geometry. CAD systems propose stan-
dard visualization tools, such as hiding different parts, curves and
sketches and rendering only wireframe geometry. Users can also
create section views, which are invisible 3D planes to create a cut
in the geometry and hide the part closest to the user, creating a vi-
sualization similar to section views found in engineering drawings
[11].

Features to navigate the program and the geometry. CAD systems
also provide features to interact between the two domains. Hov-
ering over an operation highlights which geometry was created
or modified, and vice-versa, clicking on a geometric entity will
highlight the operation(s) which created it. Users can undo and
redo actions which they performed in the GUI. This action history
works linearly and mixes program actions and geometry actions.
As a consequence, if a user wants to undo an edit they have to undo
all intermediate actions that they have performed since the edit,
including non-programmatic actions like hiding 3D parts.

Summary. We observe that CAD systems provide features for
inspecting the different operations of the CAD program and for
inspecting 3D geometry. These features have been designed for
working with a single model state.

3.2 Creating and analyzing a CAD error dataset
In this section, we create and analyze a dataset of reference errors
to gain further insight into how reference errors occur in the real
world and how users overcome them. This dataset was also used to
find examples for our lab study. The data originates from Onshape’s
public documents, which comes from users who have agreed to
make their document publicly available. These documents contain a
modeling history, which is a log of changes made to either the CAD
program or to the visibility of geometry. The modeling history does
not contain more detailed UI traces such as the two first temporary
model state changes from Fig. 3.

Onshape provided us with 200 high-quality CAD documents
(featuring a high number of the variable operations) which result in
1768 modeling histories. Out of all edits performed on a CADmodel,
5123 of them cause a subsequent operation to fail for the first time,
which is a total of 3% of all edits. In total, 75% of error messages are
directly related to reference problems. Of the remaining, 8% may
hide reference errors.

Debugging segments. We are interested in segments of the mod-
eling history where a reference error occurs and the user manages
to fix it. We call them debugging segments. Formally, we define a
debugging segment by a sequence of successive modeling history
entries which starts with a CAD model without any errors, fol-
lowed by an edit that causes one or multiple operations to break
and which ends without any errors. Additionally, we impose that (1)
the CAD program should have the same operations at the start and
at the end of the segment and that (2) the segment cannot contain a
sufficiently high number of undo actions to remove the initial edit.
In total, our dataset contains 3243 debugging segments.

We conceptualize debugging reference errors as a searching
process between an edited operation 𝑜𝑒𝑑𝑖𝑡 and a failed operation
𝑜 𝑓 𝑎𝑖𝑙 , see Sec. 3.1. We define the number of operations between
these two operations as the error range, i.e., the length of the opera-
tion sequence which users have to parse. The distribution of error
ranges in our dataset is a long-tail distribution with many short
error ranges where 𝑜 𝑓 𝑎𝑖𝑙 occurs only a couple of operations after
𝑜𝑒𝑑𝑖𝑡 . Similarly, if we look at how long users took for debugging
an error, we can see a similar distribution where the median time
is under a minute to solve an error, see Fig. 4. However, looking at
segments with an error range higher than 5, the median debugging

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Hover Double-click Permanent
Figure 3: CAD systems provide different interactions to inspect operations. Left: Hovering over an operation highlights geometry
created by the operation. Middle: Editing an operation shows the 3D model only until the selected operation and its created
geometry. Right: Moving the rollback bar to an operation permanently stops the execution of any subsequent operation.

0 20 40 60 80
0

200

100

Debugging time (min)

Figure 4: Distribution of debugging times in our dataset.
While many errors are easy to fix, 10% of the debugging seg-
ments take longer than 4 minutes to debug.

Edit Hide Rollback Bar Undo

0
250
500
750

1000

Figure 5: Distribution of actions taken during debugging. The
four most common actions are: Edit an operation; Hide ge-
ometry; modify the Rollback Bar (see Fig. 3); Undo an action.

time increases to 4 minutes. This confirms that the current CAD
features already work well for close-by errors but also that debug-
ging becomes increasingly more difficult with growing program
complexity. Note that our dataset contains only errors which users
actually managed to solve, which means that we might not capture
many challenging errors.

How do users tackled errors in our dataset? Counting the num-
ber of most used operations, see Fig. 5, we can see that a common
strategy performed to tackle an erroneous edit is to perform more
edits. Users also frequently toggle on and off the visibility of geom-
etry (Hide action) and they change the model state by changing the

last execution of the program (called Rollback Bar in Onshape).
On fourth place, users use both the Undo and Redo action. This is
aligned with the navigation features listed in Sec. 3.1.

3.3 Hypothesized challenges and conceptual
model

From these observations, we hypothesize four fundamental chal-
lenges in debugging CAD reference errors:
Challenge 1: Geometric Complexity To understand reference
errors, users need to identify intended topological changes and un-
intended geometric errors. Complex geometry can make it tedious
to perform these evaluations and even lead to overlooking changes.
Challenge 2: Program Complexity Users need to analyze each
operation in detail to identify where the error occurred. For longer
programs, this becomes more challenging.
Challenge 3: AnalyzingMultiple States Since references are bro-
ken after an edit, identifying them involves understanding how the
model changed after the edit. This in turn involves understanding
the model in two states (before and after the edit) and comparing
them.
Challenge 4: Reference Dependencies Between Operations
Since references point to geometric entities created at any point
in the program, discovering reference errors and resolving them
requires analyzing the operations in context and understanding the
dependencies across different operations.

Inspired by these four challenges, we hypothesize a conceptual
model that represents the user’s investigative process as they search
for an unintended reference change within the CAD program. This
model, illustrated in Fig. 6, features a two-dimensional exploration.
The first dimension represents movement between operations. Sim-
ilar to lines in a program, the operation structure of a CAD model
has to be periodically rediscovered by the user (Challenge 2). The
second dimension involves transitioning between two states: before
and after the edit (Challenge 3). Each point in this 2D space has
geometric information that must be inspected (Challenge 1). Fi-
nally, points in this 2D space must be analyzed in context to extract
reference dependencies (Challenge 4).

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

Before edit

After edit
Start/End

Figure 6: Our conceptual model for debugging reference errors. Users need to understand the programmatic modeling sequence
(horizontal dimension) and the differences before and after the edit (vertical dimension). Since CAD systems present a single
view at a time, users often create a mental map of these model states by interactively navigating this 2D space (arrows). For
example, users will use undos and the rollback bar to navigate the vertical and horizontal dimensions, respectively.

4 PROTOTYPE: DECAD
Our goal is to understand challenges and workflows involved in
debugging reference errors and how to support them. For this
purpose, we created a DeCAD, a prototype debugger for CAD. We
will use DeCAD as a probe for our lab study and to inform future
tool designers.

The following design goals are directly derived from the chal-
lenges listed in Sec. 3.3:
DG1. Facilitate the collection of per-operation information and sum-
marize it succinctly. After performing an edit, the user should be
assisted in the search of the operation featuring an unintended
reference change. The user should be able to quickly pinpoint oper-
ations worth investigating. Searching for this operation requires
efficiently collecting per-operation information.
DG2. The tool should help the user to effortlessly compare multiple
operations in detail. During debugging, users need to understand
how an operation sequence works and how it changed after the edit.
The tool should support this two-dimensional exploration problem.
DG3. A debugging tool for CAD should support discovering change
both in geometry and in references. Confronted with unintended
entity matching results, users need to discover arbitrary changes in
references and geometry, made by the CAD system. CAD models
can be complex and change blindness and out-of-view parts of
interest should be taken into account.

Based on the three design goals, we have implemented three
groups of features in DeCAD: (DG1) a volume difference chart;
(DG2) a two-dimensional view of the CAD operations; (DG3) per-
operation shape comparison features between edits and reference
arrows. Each feature will be explained in the following sections.

4.1 Volume difference chart
When confronted with a reference error, one of the main challenges
that a user is facing is to find out which operation is subject to an
unintended reference change. With current CAD systems, the user
can only inspect operations one at a time to gather information
about changes w.r.t. the edit.

Figure 7: The volume difference chart presents scalar infor-
mation about geometrically divergent operations without
the need to inspect each operation at a time. The top row
shows what this geometric difference corresponds to.

Instead of the user executing this repetitive task, we propose a
feature to provide a succinct, scalar answer for all operations to a
question which can be proceduralized.

More specifically, our idea is to investigate change in geometric
behavior of an operation after an edit. We ask the following ques-
tion: what is the boolean difference at operation 𝑜𝑖 between the
model’s geometry after the edit and before the edit? Mathematically,
this question corresponds to Eq. 1 :

𝐷𝑖 𝑓 𝑓 (𝑜𝑖) = 𝑉𝑜𝑙 (𝑀after (𝑜𝑖) −𝑀before (𝑜𝑖)) (1)

where 𝑉𝑜𝑙 is the scalar volume function,𝑀after (𝑜𝑖), 𝑀before (𝑜𝑖) is
the CAD model’s geometry at operation 𝑜𝑖 after the edit and before
the edit, respectively. We visualize these values in an operation
timeline chart, see Fig. 7. We also highlight operations with an
increasing difference w.r.t. to the previous operation with a larger
circle.

The intended use of this feature is to locate operations which are
worth inspecting in more detail, based on the divergence in geo-
metric behavior. For example, it is often worth inspecting the first
operation which diverges geometrically after the edited operation.

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

After edit

Before edit

Figure 8: Using the two-dimensional view feature, the user
can select operations which they want to compare.

Note that a diverging operation might be different from a failed
operation, see Sec. 3.1.

4.2 Two-dimensional view
To support the comparison between multiple model states, we
propose a two-dimensional panel view feature. To build the visual-
ization, the user selects operations in the standard CAD interface
and then clicks on the start button, see Fig. 8. This will unroll the
model states for the selected operations in a two-dimensional grid
structure, where the top row visualizes per-operation model states
before the edit and the bottom row visualizes per-operation model
states after the edit. With multiple model states unrolled in this
view, the user can avoid frequent context switches to compare them.

Note that visual programs are often representedwith node graphs,
e.g. Adobe Substance. However, graph representations take up more
screen space to account for operation dependencies. Inspired by
[24], we adopt a comic-strip layout because it is the most economi-
cal layout in terms of screen real estate. This choice also stays close
to the list-like representation of the host CAD system, where the
operations of a model are represented as list of operations, hiding
their dependency structure away from the user.

Each panel is a 3D scene, that the user can interact with. The
typical 3D camera controls, i.e., zoom, pan and rotation are synchro-
nized between all panels. Thanks to this, when the user is looking in
one panel at a particular part of the 3D geometry, other panels are
showing what this part of the geometry looks like at different model
states. In practice, we use a single camera which is shared among
all 3D scenes. Similarly, the user can select parts to show and hide,
using a similar interaction as in the host interface. A selected part
will be hidden among all operations in the same row. However, part
identifiers before and after the edit are not necessarily the same
and we therefore cannot synchronize this feature between the two
rows.

Hovering over an operation panel will highlight input entities in
the previous panel in which they appeared last. For example, a se-
lected sketch face will be highlighted in the sketch operation which
created the face. This highlight can be made permanent by clicking
on an operation panel. The highlighting feature is synchronized
among columns to facilitate comparison before and after the edit.

Direct comparison Overlay Boolean difference

Figure 9: Instead of comparing side-by-side geometry (left),
the user can overlay geometry and change their opacity (mid-
dle) or they can visualize the boolean difference (right).

4.3 Comparison features
We want to support the discovery of change, both in geometry and
in references. The two-dimensional panel view already provides a
means of comparing geometry visually by synchronizing 3D model
states before and after the edit. The model before the edit will be
shown in the top panel and the model after the edit will be shown
in the bottom panel, see Fig. 9. The user can use this stacked view
to compare geometry and highlighted input entities.

However, for more complex models, we offer additional features.
First, the user can overlay the geometry from the top row onto the
bottom row. The transparency of the overlayed geometry can be
modified if needed, see Fig. 9 (middle). This feature is also useful to
recontextualize geometry from both rows after a major change.

Second, the user can directly visualize the boolean difference
in geometry between the two rows. More specifically, we subtract
the geometry from before the edit from the geometry after the edit.
The resulting geometry will be shown in red. We also perform the
boolean difference in the opposite direction to obtain the geometry
which has been added after the edit. This geometry will be shown
in green.

Third, we provide reference arrows to support the discovery of
changing references. Reference arrows point from an operation
to its input entities, see Fig. 10. They are implemented as leader
lines, which point from an operation panel to an entity from a
previous operation, they point from right to left. We fix the starting
point of each leader line on the left side of the operation label. The
anchor point of each leader line, i.e. its end point [52], points to the
projected area of a 3D entity. We optimize for the best anchor point,
which is a challenging problem [15]. We simplify the problem by
considering each leader line separately and by adopting a simplified
notion of saliency to choose an anchor point. Inspired by [15],
we want to select the 2D point which is furthest away from the
boundary of its region and which is closest the right side of the
panel. While the first criteria favors points which are local centroids
and far away from thin features, the second criteria accounts for
the fact that leader lines come in from latter operations, i.e., from
the right side of the panel. More specifically, we maximize Eq.2.

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 ((𝑥,𝑦)) = 𝑑𝑖𝑠𝑡𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 ((𝑥,𝑦)) +
𝑦

𝑤𝑝𝑎𝑛𝑒𝑙

(2)

To improve runtime behavior, we solve the optimization problem
only if the view has been modified by the user and only every
second (and not every frame), which we found to work well in
practice. While recomputing the most salient point, we lift the most
salient 2D point back to its 3D entity and define this salient 3D

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

Out-of-view references

Pan view to
discover references

Reference comparison

Figure 10: The user can activate reference arrows to show
which entities have been used by which operation (left). Ref-
erence arrows are also useful to discover out-of-view entities
(right).

point as the anchor point of the leader line, whose position is being
updated every frame. Lastly, we only compute salient anchor points
for currently highlighted entities.

Leader lines for non-highlighted entities are rendered trans-
parently to not obstruct the view unnecessarily, yet they are not
invisible to be discoverable. Leader lines can be toggled on or off.

Reference arrows help the user to distinguish which entities
have been used by which operation and to emphasize change in
use of entities, see Fig. 10 (left). They are also helpful to discover
referenced entities which might be out of view from a particular
3D viewpoint. They provide the user with an incentive to discover
different parts of the 3D scene.

4.4 Implementation
We implemented DeCAD as an extension to Onshape. Extensions
are websites exposed through an iframe in the CAD system. Our
website is implemented in html/css/javascript, using three.js [6] for
3D rendering. The website exchanges messages with a local python
server which performs REST API calls to download program and
geometry data from Onshape. The python server also performs
geometric computation with a local Parasolid [3] version, which is
the geometry kernel used by Onshape.

For the volume difference chart and for the two-dimensional view
feature, we require intermediate geometry for two different versions
of the CAD program. While CAD systems often cache intermediate
geometry for the current program, for example to allow users to
quickly inspect intermediate geometry, they do not keep geometry
from previous versions. Similarly, the boolean computation for the
volume difference chart takes additional time. We emphasize that
these are not conceptual limitations for the proposed features. For
the lab study, we download necessary geometry in advance and
pre-compute boolean differences.

5 LAB STUDY
Using debugging as a metaphor for how users fix reference errors
in CAD, we conduct a qualitative lab study. The goal of the lab
study is to observe challenges that users face in practice, and what
debugging workflows they gravitate towards to overcome them. Ad-
ditionally, we want to understand the effects of a debugging-specific
intervention in an already existing CAD system via a tangible tool,
DeCAD, and to advise design implications for future tool builders.

Participant ID P1 P2 P3 P4 P5 P6
CAD systems O, S O, S, I O O, S S O, S, I, F
Years of experience > 5 > 5 < 1 1-3 > 5 > 5

Table 1: CAD systems: O: Onshape, S: Solidworks, I: Inventor,
F: Fusion360.

The examples used in the study are challenging cases from the
dataset created in Sec. 3.2.

5.1 Research Questions and Methods
The lab study was designed to investigate the following research
questions:
RQ1 -ChallengesWhat challenges do CADusers facewhen debug-
ging reference errors? Do thesematch our hypothesized challenges?
What additional challenges do they face?
RQ2 - Workflows What debugging workflows do users adopt? In
what ways are they different from our hypothesized workflow?
RQ3 - Tool How does our tool address challenges faced by CAD
users? What new workflows does DeCAD enable?

Study protocol. The study was conducted in a lab using a Mac-
Book Pro on a 23-inch monitor, a keyboard and a mouse. The study
itself was structured in 3 phases: a tutorial phase, five debugging
tasks and two follow-up questions.

The tutorial phase began with a video explanation of DeCAD in
the context of an erroneous edit. To familiarize participants with
our tool, they were asked to use DeCAD themselves on the same
model to debug it.

For the debugging task phase, participants could ask questions
about Onshape, the tool or the task itself, but they were not given
any hints about the source of the reference error. Each debugging
task started with the modeling context in the form of an image
illustrating either the real-world inspiration for the model or the
use of the model in a larger assembly. Then followed a video with
an edit on the model, leading to a reference error. Next, participants
were asked to open an Onshape document containing the working
model, and to replicate the edit themselves. Next, participants were
asked to fix the model within 10 minutes. More specifically, fixing
the model was framed as to "correct all errors without removing or
adding features and without changing the edit". Framing the task in
this way prevented participants from any major remodeling, but it
was still open ended enough to allow for multiple solutions.

Participants could always use all the tools available within On-
shape, and for some tasks they were asked to also use DeCAD. We
randomly assigned which participants could use DeCAD, so that
we would observe participants with and without the tool on the
same task. After the time-limit or when they finished debugging
the model, we asked them what went wrong in the model and how
they fix it.

In the last phase of the study, we asked participants what aspects
of DeCAD they found the most useful and how they would improve
the tool. In this part, participants could give feedback and engage
in an open discussion around the errors and the tool.

The study lasted approximately one hour and participants were
compensated with a 30$ Amazon gift card. With the consent of
the participants, we recorded their audio and screen and later tran-
scribed the sessions.

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

1

2

3

Figure 11: Interaction with DeCAD. (1) Using the volume difference chart, the user identifies the first geometrically divergent
operation, Extrude138. After selecting Extrude138 (2) and the edited operation Sketch69 (here out of view), the user discovers
the reference error in the two-dimensional view (3). A semi-circle has been extruded, adding an unintended bump to the
previously straight edge. The first failed operation, Sketch75 appears 47 operations after the edit, making this error difficult to
locate without DeCAD.

Participants. The debugging tasks in our study involve three
components which can be challenging for participants. First, CAD
systems are known for having a steep learning curve. Second, partic-
ipants will need to learn how to use our tool within the time allotted
during the study. Third, participants will need to understand the
workings of an unknown CAD model.

Anticipating these challenges, we were looking for participants
with extensive experience in a parametric CAD system to lower
at least the impact of the first challenge. We contacted CAD users
through relevant mailing lists and messaging channels within our
institution. In our sign-up form, we asked potential participants in
what context they use CAD, which CAD software they are most
familiar with and for how many years they have been practicing
CAD. We ran the entire study with 13 participants. After observing
challenges related to learning parametric CAD concepts or adapt-
ing to substantial software differences, e.g. users who were only
familiar with Solidworks, we discarded 7 participants. Finally, we
retained data from six expert participants who either have been
using Onshape or Solidworks for a long time (over 5 years) or who
have been primarily using Onshape for a shorter time, but also for
side projects, see Table 1.

5.2 Results
Based on participants’ interactions and answers during the lab
study, we identify 5 challenges that were commonly encountered
and four workflow phases. Using DeCAD, participants managed
to overcome our hypothesized challenges and to employ a new

workflow. However, using our tool, they also encounter two new
challenges.

These results are best understood by looking at the interactions.
Please refer to the accompanying video and the supplemental ma-
terials.

5.2.1 What challenges do users face when debugging reference er-
rors? We examine the sessions to confirm that the four challenges
identified in Section 3.3 reflect reality. Our analysis reveals evidence
to support each of the four initially hypothesized challenges, along
with the identification of an unforeseen fifth challenge.

Challenge 1: Geometric complexity. We observe that partici-
pants invest time interacting with 3D geometry to improve their
understanding, e.g. by hiding 3D parts, rotating around the model,
and zooming into various parts.

P4 described that geometric information can be obstructed by
different parts of the scene: "That was hard to identify, because there’s
other parts in the middle. This gear gets in the way this part gets in
the way, and it was difficult to tell that without just going through
feature by feature." (P4)

Whereas another participant strategically decided to get a holis-
tic view of the geometric change before inspecting operations: "I
guess it might be good to just compare back and forth first, to see
what are we expecting to change with the whole. And what are we
not expecting to change with it." (P2)

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz
O

pe
ra

tio
ns

P5 - T1

ta td te

Time

P1 - T1

ta tb tc td te

P4 - T2

ta tb tc td te

P1 - T5

ta tb tc td te

Before edit
After edit

Two-dimensional view
Volume difference chart

P3 - T4

ta tb td te

P4 - T5

ta tb tc td te

Figure 12: CAD model states of three debugging sessions without DeCAD (top row) and with DeCAD (bottom row). Each step
along the x-axis represents one model state change. The y-axis indicates the index of the current operation in the CAD program.
The label Pi-Tj stands for participant i on task j. We identify four common debugging phases: (1) [𝑡𝑎, 𝑡𝑏]: Searching for the
most relevant geometric error, often by undoing the edit. (2) [𝑡𝑏 , 𝑡𝑐]: Searching for the first operation featuring a reference error,
often by inspecting many operations. (3) [𝑡𝑐 , 𝑡𝑑]: Gathering contextual information, often by inspecting operations leading up
to the faulty operation. (4) [𝑡𝑑 , 𝑡𝑒]: Acquiring more detailed information to correct the reference error, often by undoing the
edit. In the bottom row, we observe that frequent model state changes are being replaced by fewer but longer interactions with
DeCAD’s features.

Challenge 2: Program complexity. Users were challenged by
the need to explore a long list of operations. When faced with an
error, participants have little guidance about what operations to
inspect apart from error messages from failed operations. These
were generally not perceived as helpful: "Okay, we’re missing a
reference to geometry. But what geometry? Good luck!" (P2)

One common pattern was to start inspecting one operation and
to discover changes leading up to that operation. Participants did
not describe this process constructively: "So I kind of spent a while
digging around through some other things to see if the error happened
earlier. One of the main points I wasn’t sure about was at what point
did it happen?" (P6) Other participants described this as "just going
through feature by feature" and as "some more poking". Additionally,
participants found it useful to undo the edit multiple times, see Fig.
12 (Phases (1) and (2)).

Challenge 3: Analyzing Multiple States. The need for simul-
taneous understanding of the before and after states was evident
by users undoing and redoing the edit. As explained in Sec. 3.1, the
undo function in CAD systems includes not only program changes,
but also other UI interactions which are being used for program
exploration. This means that often an edit cannot be undone via a
single click and participants had to enter the edited operation and
reverse the edit manually. This explains the strong oscillations in

the first three session diagrams in Fig. 12. This also makes geometry
comparison between different program states more tedious.

Challenge 4: Understanding reference dependencies between
operations. To find out how to fix an error, most users will try to
understand what caused an unintended change. One common strat-
egy is to inspect operations leading up to the suspected reference
error and to undo the edit several times to gain visual confirmation,
Phase (3) and Phase (4) in Fig. 12, respectively.

However, we observe that the underlyingmechanism for changes
is not always obvious to participants: "That is what I believe went
wrong. . . . I don’t know that I’m 100% confident in knowing why
changing something in Sketch 69 caused the other part to have an
error." (P6)

Not understanding why a change occurred might the reason for
participants undoing the edit multiple times just before correcting
a reference error. This general lack of explainability from CAD
systems was well expressed by P1: "I don’t understand how this
works, but I built enough intuition." (P1)

Additional Challenge: Verification. While not previously hy-
pothesized, we observe in our study that participants not only
struggled to explain why something changed but also often lacked

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

confidence in their fix. "I don’t know if I fixed it correctly. But it’s not
angry anymore." (P3)

Interestingly, there is no guarantee for the absence of other silent
errors which have not caused any other operation to fail. "I guess we
don’t have errors. I’m not entirely convinced the model will actually
work." (P2)

5.2.2 What debugging processes do users adopt? Even though par-
ticipants showcased idiosyncratic interactions with the CAD sys-
tem, we observed four commonly encountered debugging phases:
(1) Locate topological changes; (2) Searching for reference errors;
(3) Understanding the context; (4) Understanding how to correct
an error.

(1) Locate topological changes. Confronted with an erroneous
edit, participants first searched for what particular part of the 3D
model changedw.r.t. before the edit. This is achieved by undoing the
edit multiple times and navigating the 3D geometry to understand
what parts have changed.

(2) Searching for the reference error. After locating the gen-
eral 3D region, many operations are being traversed to search for
relevant operations.

(3) Understanding context. Once an operation is being sus-
pected as likely to have a reference error, local context information
is gathered to rule out a false positive.

(4) How to correct the error. Since no straightforward expla-
nation about a change is provided to participants from the CAD
system, participants try to semantically copy the references from
before the edit, applied to the new topology of the model. This can
require multiple undo actions of the edit.

5.2.3 How does DeCAD address challenges faced by CAD users?
We found that participants managed to use DeCAD and to integrate
it in their debugging process. In participants’ workflows, DeCAD
replaces frequent model state changes by a few interactions with
the volume difference chart and the two-dimensional view features,
see Fig. 12.

We observed that DeCAD was helpful tackling the aforemen-
tioned debugging phases. While DeCAD helps to minimize the
number of undo actions to understand different model states, it
does not support undoing exploratory edits to fix the error. DeCAD
also introduces two new challenges: additional CAD program states
can lead to confusion and sometimes too much visual information
is introduced with reference arrows.

Finding unintended topological changes and reference er-
rors. A common pattern for finding relevant geometric changes
was to use the volume difference chart as a useful starting point.
"It helped me pinpoint where to go look. [. . .] in one case, the sketches
like way over here to the left, and then you only saw that errors come
up later. [. . .] I probably would spend a lot of time focusing on the
errors right around that sketch." (P1)

Participants were aware of the gap between the information
provided by the host CAD system and the hidden operation that
they had to find: "Having this ability to see when something is chang-
ing the model, not necessarily when an error is introduced, is really
helpful. Because usually, I think in many of these cases the problem

with the error is not with the feature that has the error, but it’s some
sort of feature leading up to it. " (P2)

The interaction logs show that the first two to three debugging
phases are often replaced with a few usages of the volume difference
chart and the two-dimensional view, see Fig. 12.

Discovering changes. Once a problematic region of operations
was identified via the volume difference chart, participants used the
two-dimensional view feature to visually inspect these changes. In
this mode, for several participants, the "change in geometry aspect
of it was really handy" (P3), i.e., the boolean difference visualization.
The boolean difference complements the standard, constructive
view of the host CAD system by a comparative view which visually
explains what an operation might be missing: "We made a change
in the extrude based off the sketch that was changed. It didn’t include
all the pieces that it should have included. So I determined that was
the case by looking at the volume difference" (P6)

Several participants made use of the reference arrows and ap-
preciated this new visual vocabulary: "Because I think that’s one of
those things that’s a little bit hard to compare. Otherwise is you’re
looking at, okay, so we have this area of the sketches red, you know,
or it’s changed, or something like that. " (P2). DeCAD’s comparison
features helped users to tackle the last two debugging phases.

Have I fixed it correctly? After fixing an erroneous edit, some
participants lost trust in the correctness of the model because other
operations could still be dysfunctional, even if it did not cause an
error message. Unexpectedly, we found that the volume difference
chart helped raising confidence in an edit, since participants could
see which operations would introduce additional change: "I was
pretty confident that that would be the fix, because everything after
that was just built off of Extrude 4. Because, like once you have this
missing piece, everything else kind of looks like it’s also missing." (P6)

New challenges. During one debugging task, P4 was confused
by the three program states in front of them: one from the host CAD
system and two from the two-dimensional view. This led to the
participant trying to fix an error, even though they had temporarily
undone the edit.

The program states of the two-dimensional view are detached
from the host CAD system by design to provide users with a per-
manent view of the entire operation sequence. However, as a side
effect, this introduces additional cognitive load.

Additionally, P6 commented on the lack of visibility when they
used the reference arrows on task 3. When activated, too many
reference arrows would be visualized by default. The participant
mentioned that they wanted a more intelligent selection of relevant
references, see Fig. 13.

6 DISCUSSION
In this section, we summarize our study findings and the lessons
that we have learned into a set of design guidelines for future
debugging tool builders. Then, we mention the limitations of our
work and discuss future work in this field.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

Visual highlights
Too many

reference arrows
by default

Manually
selected

Figure 13: (Left) Initially, the user is presented a visual high-
light comparison of reference inputs. (Middle) Activating
the reference arrow feature can be overwhelming. (Right)
Ideally, we would want to select only relevant references.

6.1 Design guidelines
Comparative features. The features in DeCAD are largely driven

by the need for visibility and juxtaposition in debugging [32]. How-
ever, currently CAD systems do not provide comparative features
in the two-dimensional mode state space from Fig. 6. In the study,
participants extensively used the comparison features and found
it useful. Future tools should consider providing even more per-
operation comparative features.

Tools should be as integrated as possible. While participants ap-
preciated the implementation of DeCAD as an extension to their
already known CAD system, we observed that the tool could be
even more integrated. In particular, the volume difference chart lets
the user interact with a list of operations. However, in Onshape
there is already such a list.

Additionally, we observed that while it was helpful that the cam-
era was synchronized between the panels of the two-dimensional
view, it would have helped some participants if the main view of
Onshape would also be synchronized. We advocate for sharing a
single 3D scene between editing and debugging views and a tight
integration into the already existing UI instruments.

Similarly to debugging tools in software IDEs, DeCAD does not
need to be open all the time, we envision that it can be opened and
closed on demand.

Customize the comparative function. The volume difference chart
feature is a useful comparative feature in cases where the edit does
not intend to change the geometry early on. However, depending
on the edit, a pure boolean difference operation as a comparison
function might give a noisy and useless signal. We recommend
that users can customize the comparison function that they wish
to summarize in a timeline chart.

As already mentioned, the reference arrows were sometimes
perceived as introducing too much noise. We advocate for more
intelligent, customizable selection tools for reference arrows.

Customizable layout. Participants pointed out that they would
have liked to open the two-dimensional view and the volume dif-
ference chart as external windows or as draggable panels. Indeed,
introducing new debugging features should not significantly lower

the screen real estate of existing UI elements. Besides from layout
customization, we also recommend thinking of debugging informa-
tion as a kind of reference material used for 3D modeling and to
explore the idea of providing temporal features which have been
proposed in the context of digital drawing tools [28].

Improve discoverability. Particularly for references, we observed
that discoverability is an issue, even in a single model state context.
Depending on the current 3D view, referenced entities might be
overlooked or it might be hard to discover how many entities are
currently being referenced. Our proposed reference arrows showed
promising interaction behavior by introducing a new visual vo-
cabulary for references. For future tool-builders, we recommend
improving the discoverability of the inner workings of CAD pro-
grams.

6.2 Limitations
Observations and data are Onshape-centric. For this work, we

made the assumption that Onshape represents an industry-standard
parametric CAD modeling tool. While the underlying principles of
parametric CAD are shared among different tools, we think that
it is important to acknowledge that there are also differences. For
example, Solidworks uses a different operation sequence represen-
tation, a tree, not a list, which reifies the dependencies between
operations. Also in Solidworks, a sketch cannot be shared between
multiple operations and the software does not allow multi-part
modeling. These restrictions lower the impact of reference errors.
Onshape gives users more freedom which comes at a price.

Unknown models in lab study. In our lab study, users were con-
fronted with CAD models which they did not author themselves.
Based on our discussions with experts, engineers work mostly on
their own models or on models created by team members who can
explain them. We argue that developing tools to explore unknown
models is still useful. First, in software engineering as in CAD, a
program which has not been revisited for a while has to be partially
rediscovered even by the author themselves. Second, sharing CAD
programs with others has been introduced by Onshape’s public
documents repository. Models from this repository are commonly
copied by other users who need to or want to discover how they
work. Third, recent industry effort has been made to translate Solid-
works programs into Onshape programs [4]. This is potentially
foreshadowing a future where CAD programs will be shared more
widely among different CAD systems, as opposed to only geome-
try, as it is the case today, increasing the need for CAD program
exploration tools. Lastly, with the future development of AI tools
capable of working with code, images and 3D data, it is likely that
CAD programs will be at least partially written by the tool itself
[39]. Users will need tools to understand automatically generated
CAD programs.

6.3 Future work
Broader applicability. DeCAD has been designed for debugging

reference errors through visualization. However, DeCAD’s visual-
ization features can also be used to explore the functioning of a
modeling sequence without the context of an edit by unrolling parts
of the sequence and visualizing references. This could be especially

Understanding and Supporting Debugging Workflows in CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

useful in an educational setting. Additionally, an edit does not need
to provoke an explicit error message. DeCAD can be used to detect
silent errors and to verify the absence of change in geometry and
in reference assignment.

Make suggestions. The features implemented in DeCAD support
users in discovering relevant differences in a CAD program before
and after an edit. Future work could consider going one step further
into working on algorithms which suggest to users which refer-
ences should be verified. Since matching references is an ill-posed
problem, it would be interesting to develop a sound, customizable
matching tool to empower users.

Other kinds of errors. In this work, we focused on reference errors.
However, another major class of CAD errors, geometric errors
would also benefit from future visualization work. For example,
after an edit, guide and path curves for Loft operations might no
longer be intersecting even though this seems to be the case to the
naked eye. Knowing which curves are not intersecting, where they
intersected before and why they no longer intersect each other
are interesting questions at the intersection of programming and
geometry.

Trust in CAD systems. We observed in the lab study that users
found it challenging to verify that the CAD model still worked after
an edit, even without throwing any errors. This points to a larger
question: why should a user trust a CAD system to not modify
their program without their consent in unexpected places? And
how do we recover the trust of the user in the model? Future work
should investigate verification mechanisms for users and think
about asking the user’s consent before making changes.

7 CONCLUSION
In this work, we tackle errors in CAD as a debugging problem.
First, we analyze the domain-specific debugging challenges which
arise when reasoning about both geometry and program structure.
Informed by this analysis, we prototype DeCAD, a debugger for
CAD which supports users in comparing different model states. We
use DeCAD in a qualitative lab study as a probe to better understand
user’s challenges and workflows. We hope that our findings will be
informative for future tool-builders to support CAD designers and
educators.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful feedback, user study par-
ticipants for their time and Ilya Baran and Matthew Mueller from
Onshape for the insightful discussions and the provided data. This
work was supported by NSF CCF-2219864 and NSF CCF-2319181
as well as gifts from Amazon and Meta.

REFERENCES
[1] 2023. CADQuery. https://github.com/CadQuery/cadquery. Accessed: 2023-12-19.
[2] 2024. Onshape. https://www.onshape.com/en/. Accessed: 2024-03-25.
[3] 2024. Parasolid. https://plm.sw.siemens.com/en-US/plm-components/parasolid/
[4] 2024. SolidTranslate. https://www.cadsharp.com/solidtranslate/
[5] 2024. Solidworks. https://www.solidworks.com/. Accessed: 2024-03-25.
[6] 2024. three.js. https://threejs.org/
[7] Ekansh Agrawal, Omair Alam, Chetan Goenka, Medha Iyer, Isabela Moise, Ashish

Pandian, and Bren Paul. 2024. Code Compass: A Study on the Challenges of
Navigating Unfamiliar Codebases. arXiv preprint arXiv:2405.06271 (2024).

[8] Abdulaziz Alaboudi and Thomas D LaToza. 2021. An exploratory study of
debugging episodes. arXiv preprint arXiv:2105.02162 (2021).

[9] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On the
dichotomy of debugging behavior among programmers. In Proceedings of the
40th International Conference on Software Engineering. 572–583.

[10] Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using transient widgets to
create scale variations of icons. ACM Transactions on Graphics (TOG) 34, 4 (2015),
1–11.

[11] Theodore J Branoff and James H Earle. 2016. Interpreting engineering drawings.
Cengage Learning.

[12] Dan Cascaval, Rastislav Bodik, and Adriana Schulz. 2023. A Lineage-Based Refer-
encing DSL for Computer-Aided Design. Proceedings of the ACM on Programming
Languages 7, PLDI (2023), 76–99.

[13] Dan Cascaval, Mira Shalah, Phillip Quinn, Rastislav Bodik, Maneesh Agrawala,
and Adriana Schulz. 2022. Differentiable 3D CAD Programs for Bidirectional
Editing. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 309–323.

[14] Kathy Cheng, Phil Cuvin, Alison Olechowski, and Shurui Zhou. 2023. User
Perspectives on Branching in Computer-Aided Design. Proceedings of the ACM
on Human-Computer Interaction 7, CSCW2 (2023), 1–30.

[15] Ladislav Čmolík and Jiří Bittner. 2010. Layout-aware optimization for interactive
labeling of 3D models. Computers & Graphics 34, 4 (2010), 378–387.

[16] Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2021. Boundary-sampled half-
spaces: a new representation for constructive solid modeling. ACM Transactions
on Graphics (TOG) 40, 4 (2021), 1–15.

[17] Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or. 2009. iWIRES: An
analyze-and-edit approach to shape manipulation. In ACM SIGGRAPH 2009
papers. 1–10.

[18] Aditya Ganeshan, Ryan Y Huang, Xianghao Xu, R Kenny Jones, and Daniel
Ritchie. 2024. ParSEL: Parameterized Shape Editing with Language. arXiv
preprint arXiv:2405.20319 (2024).

[19] Sneha Gathani, Peter Lim, and Leilani Battle. 2020. Debugging database queries:
A survey of tools, techniques, and users. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–16.

[20] David J Gilmore. 1991. Models of debugging. Acta psychologica 78, 1-3 (1991),
151–172.

[21] Johann Felipe Gonzalez, Danny Kieken, Thomas Pietrzak, Audrey Girouard, and
Géry Casiez. 2023. Introducing Bidirectional Programming in Constructive Solid
Geometry-Based CAD. In Proceedings of the 2023 ACM Symposium on Spatial User
Interaction. 1–12.

[22] Ken Gu, Eunice Jun, and Tim Althoff. 2023. Understanding and supporting
debugging workflows in multiverse analysis. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–19.

[23] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[24] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graph-
ical histories for visualization: Supporting analysis, communication, and eval-
uation. IEEE transactions on visualization and computer graphics 14, 6 (2008),
1189–1196.

[25] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-sketch: Output-
directed programming for svg. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology. 281–292.

[26] Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, and Vladimir Lara-Villagrán.
2016. Learning principles in program visualizations: A systematic literature
review. In 2016 IEEE frontiers in education conference (FIE). IEEE, 1–9.

[27] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual debugging
techniques for reactive data visualization. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 271–280.

[28] Josh Holinaty, Alec Jacobson, and Fanny Chevalier. 2021. Supporting refer-
ence imagery for digital drawing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2434–2442.

[29] Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible
shape manipulation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134–1141.

[30] Peiling Jiang, Fuling Sun, and Haijun Xia. 2023. Log-it: Supporting Programming
with Interactive, Contextual, Structured, and Visual Logs. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1–16.

[31] Hyeonsu Kang and Philip J Guo. 2017. Omnicode: A novice-oriented live program-
ming environment with always-on run-time value visualizations. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
737–745.

[32] Amy J Ko and Brad A Myers. 2004. Designing the whyline: a debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 151–158.

[33] Amy J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering
32, 12 (2006), 971–987.

https://plm.sw.siemens.com/en-US/plm-components/parasolid/
https://www.cadsharp.com/solidtranslate/
https://threejs.org/

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Felix Hähnlein, Gilbert Bernstein, and Adriana Schulz

[34] Uday Kusupati, Mathieu Gaillard, Jean-Marc Thiery, and Adrien Kaiser. 2024.
Semantic Shape Editing with Parametric Implicit Templates. In ACM SIGGRAPH
2024 Conference Papers. 1–11.

[35] Thomas D LaToza and Brad A Myers. 2011. Visualizing call graphs. In 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
117–124.

[36] Sorin Lerner. 2020. Projection boxes: On-the-fly reconfigurable visualization for
live programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–7.

[37] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2481–2490.

[38] Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, Elad Alon, and Björn Hartmann. 2019. Beyond schematic capture:
Meaningful abstractions for better electronics design tools. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–13.

[39] Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma,
Bolei Deng, Megan Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens,
Peter Yichen Chen, et al. 2023. How Can Large Language Models Help Humans
in Design and Manufacturing? arXiv preprint arXiv:2307.14377 (2023).

[40] Aman Mathur, Marcus Pirron, and Damien Zufferey. 2020. Interactive program-
ming for parametric cad. In Computer graphics forum, Vol. 39. Wiley Online
Library, 408–425.

[41] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67–92.

[42] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing and
checking behavior of embedded systems across hardware and software. In Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 299–310.

[43] William McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel
Drew, and Bjoern Hartmann. 2018. Wifröst: Bridging the information gap for
debugging of networked embedded systems. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology. 447–455.

[44] Elie Michel and Tamy Boubekeur. 2021. DAG amendment for inverse control of
parametric shapes. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.

[45] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[46] Guillaume Pothier and Éric Tanter. 2009. Back to the future: Omniscient debug-
ging. IEEE software 26, 6 (2009), 78–85.

[47] Eduardo Rinaldi, Davide Sforza, and Fabio Pellacini. 2023. NodeGit: Diffing and
Merging Node Graphs. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–12.

[48] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A fluent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198–207.

[49] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A survey
on procedural modelling for virtual worlds. In Computer graphics forum, Vol. 33.
Wiley Online Library, 31–50.

[50] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE) 13, 4 (2013), 1–64.

[51] Richard Stallman, Roland Pesch, Stan Shebs, et al. 1988. Debugging with GDB.
Free Software Foundation 675 (1988).

[52] Ian Vollick, Daniel Vogel, Maneesh Agrawala, and Aaron Hertzmann. 2007. Spec-
ifying label layout style by example. In Proceedings of the 20th annual ACM
symposium on User interface software and technology. 221–230.

[53] Anneliese Von Mayrhauser and A Marie Vans. 1997. Program understanding
behavior during debugging of large scale software. In Papers presented at the
seventh workshop on Empirical studies of programmers. 157–179.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Shape editing
	2.2 References in CAD
	2.3 Visualizing programs and program histories
	2.4 Debugging tools

	3 Analysis of errors and challenges
	3.1 GUI features in CAD systems
	3.2 Creating and analyzing a CAD error dataset
	3.3 Hypothesized challenges and conceptual model

	4 Prototype: DeCAD
	4.1 Volume difference chart
	4.2 Two-dimensional view
	4.3 Comparison features
	4.4 Implementation

	5 Lab study
	5.1 Research Questions and Methods
	5.2 Results

	6 Discussion
	6.1 Design guidelines
	6.2 Limitations
	6.3 Future work

	7 Conclusion
	Acknowledgments
	References

